


$$A = \frac{15}{12} = \frac{13}{7} = \frac{12}{15} = \frac{3}{5} = \cos \beta$$

$$Cos A = \frac{12}{15} = \frac{3}{5} = \sin \beta$$

$$Tan A = \frac{12}{72} = \frac{3}{7}$$

$$Tan B = \frac{12}{9} = \frac{3}{7}$$

$$R = \frac{13}{12} = \frac{3}{5} = \frac{3846}{5} = \frac{3846}{5} = \frac{3846}{5} = \frac{3846}{5} = \frac{3846}{5} = \frac{12}{5} = 0.9281$$

Sin B = 0.9281
Sin B = 0.9281
Tan A = $\frac{5}{12} = \frac{4167}{7}$
Tan B = $\frac{12}{5} = \frac{2.4}{5}$

$$\begin{array}{c}
 T \\
 T$$

TS
S in
$$A = \frac{1}{2}$$

 $\sqrt{3}$
 $\sqrt{3}$
 $A \cos A = \frac{\sqrt{3}}{2}$
 $Cos B = \frac{\sqrt{3}}{2}$
 $\cos B = \frac{\sqrt{3}}{2}$
 $\cos B = \frac{1}{2}$
 $Cos B = \frac{\sqrt{3}}{2}$
 $Cos B = \frac{\sqrt{3}}{2}$
 $Cos B = \frac{\sqrt{3}}{2}$
 $Cos B = \frac{\sqrt{3}}{2}$
 $Cos B = \frac{\sqrt{3}}{2}$

Finding distance

$$\frac{205t}{55}$$
 h $(5in 25^\circ = \frac{h}{20})$ 20
 $20(sin 25^\circ) = h$
 $8.5ft = h$
 $(cos 58^\circ = \frac{45}{7})^d$
 $\frac{d cos 58^\circ}{cos 58^\circ} = \frac{45}{2058^\circ}$
 $d = 85ft$