9.3 Converse to the Pythagorean Theorem

Rythagorean Than

If $r \neq \Delta$ then $a^2 \neq b^2 = c^2$ Converse

If $a^2 \neq b^2 = c^2$ then it, and Δ

$$7_{1} 8_{1} \sqrt{113}$$
 $7^{2} + 8^{2} = (\sqrt{113})^{2}$
 $49 + 64 = 1/3$
 $1/3 = 1/3$

$$9, 20, 21$$
 $9^{2}+70^{2}=21^{2}$
 $81+400=441$
 $481 \neq 441$
Aute

Acute, Obtuse

If $a^2+b^2=c^2$ then R+ Δ If $a^2+b^2>c^2$ then acute Δ If $a^2+b^2< c^2$ then obtuse Δ

b c b square
$$b$$
 5quare b Diagonals are a $a^2 + b^2 = c^2$