4.1 Triangles and Angler a figure formed by three sgmarts joining three noncollinear pts

Classifying Triangles by sides

No sides \cong
\simeq
At least 2 sides \cong
Scalene
 Isosceles

All sides \cong
Equilateral

Triangle by parts
vertex

$$
A, B, C
$$

sides $\overline{A B}, \overline{B C}, \overline{A C}$
in Isosceles the 2 equal sides are legs
Right the side opposite the right angle is called hypotenuse the other sides are legs

$\angle 1$ is an interior angle (Inside)
$\angle 2$ is an exterior angle

1 $\begin{aligned} m \angle 3 & =m \angle 4 \\ m \angle 2 & =m \angle 5\end{aligned}$

$$
\begin{aligned}
& m \angle 1+m \angle 4+m \angle 5=180 \\
& m \angle 1+m \angle 2+m \angle 3=180 \\
& m \angle 1 \angle 2
\end{aligned}
$$

Then 4.1 Triangle sum the
The 4. 2 Exterior angle Tho
 from $4.1 \mathrm{~m} \angle 1+m \angle 2+m \angle 3=180$ $\angle 3,2 a$ linear pair

$$
\begin{gathered}
\angle 3, \angle a \angle \text { linear } \angle 2=180 \\
m \angle 3+m \angle a=m \angle 3+m \angle a \\
m \angle 1+m \angle 2+n \angle 3=m \angle 2=m \angle a \\
m \angle 1+m \angle 2
\end{gathered}
$$

Cordlary to Thu 4.1
In a right triangle,
the sum of the two acute angles is 90°

Can not have two right angles or two obtuse in one triangle

Thu 4. 2
The measure of the extairor and of a triangle is equal to the sum of the two nonadjacent anger

$$
\frac{12}{m \angle a=m \angle 1+m \angle 2}
$$

2-44 even,

$$
\operatorname{ship} 40
$$

