Chip 2 Review
Functions Review Control (x) Dependent (y) Domain Range
writing linear functions

$$
\begin{aligned}
& y=m x+b \\
& m=\text { slope } \\
& b=\text { vertical }(y)-\text { int }
\end{aligned}
$$

$$
\frac{y}{x}=k \quad \text { or } y=k x
$$

Does it model direct variation
ore through origin - Graphically goes through origin

$$
\text { - Quotient for all }(x, y)
$$

- Quotient for all (x, y)

$$
\frac{y}{x}=k
$$

\square

Growth vo Decay Nonlinear Linear	Nonlinear	

\square

Direct Variation with powers $S A=4 \pi r^{2} \quad$ Leave ans Find 5 A, Vol $\quad V_{01}=\frac{4}{3} \pi r^{3}$
when nad $=3$
$S A=36 \pi u_{s}^{2}$ model direct variation $V_{01}=36 \pi w^{3} \quad y=a x^{n} \quad y=k x_{3}^{2}$

$$
y=n x^{3}
$$

$$
\begin{aligned}
& 7^{-2}=\frac{1}{7^{2}}=\frac{1}{49} \\
& \frac{a^{3}}{b^{-3}}=a^{3} b^{3} \\
& \frac{6 a^{4} b^{-2}}{9 a^{-2} b^{3} c^{2}}=\frac{6 a^{6}}{9 b^{5} c^{2}}=\frac{2 a^{6}}{3 b^{5} c^{2}}
\end{aligned}
$$

$$
\begin{gathered}
\text { Fractional Exponents } \\
\begin{array}{c}
a^{\frac{1}{2}}=\sqrt{a} \\
b^{\frac{1}{3}}=\sqrt[3]{b} \\
9 b^{\frac{1}{2}}=9 \sqrt{b} \\
(3 x)^{\frac{1}{2}}=\sqrt{3 x}
\end{array}
\end{gathered}
$$

$$
\begin{array}{cc}
\text { cloubling } & \text { Halving } \\
y=a(2)^{x} & y=a\left(\frac{1}{2}\right)^{x} \\
& \text { Half lives } \\
& 6 \text { minn } \\
& y=2048\left(\frac{1}{2}\right)^{x} \\
\left.5 \sin 5 \frac{1}{2}\right)^{10} \\
& =2004141 \frac{10}{2}(102) \\
& y=20482 \\
& y=2
\end{array}
$$

