

- Angle congruence is reflexive, symmetric, and transitive.
- Examples:
- Reflexive: For any angle $A, \angle A \cong \angle A$.
- Symmetric: If $\angle A \cong \angle B$, then $\angle B \cong \angle A$
- Transitive: If $\angle \mathrm{A} \cong \angle \mathrm{B}$ and $\angle \mathrm{B} \cong \angle \mathrm{C}$, then $\angle \mathrm{A}$ $\cong \angle C$.

Ex. 1: Transitive Property of Angle Congruence

- Prove the Transitive Property of Congruence for angles
Given: $\angle A \cong \angle B, \angle B \cong \angle C$
Prove: $\angle A \cong \angle C$
$m \angle A=m \angle B$
$m \angle B=m \angle C$
$m \angle A=m \angle C^{A}$
$\angle A=\approx \angle C$

Ex. 1: Transitive Property of	
Angle Congruence	
Statement:	Reason:
1. $\angle \mathrm{A} \cong \angle \mathrm{B}, \angle \mathrm{B} \cong \angle \mathrm{C}$	1. Given
2. $m \angle \mathrm{~A}=m \angle \mathrm{~B}$ 2. Def. Cong. Angles 3. $m \angle \mathrm{~B}=m \angle \mathrm{C}$ 3. Def. Cong. Angles 4. $m \angle \mathrm{~A}=m \angle \mathrm{C}$ 4. Transitive property 5. $\angle \mathrm{B} \cong \angle \mathrm{C}$ 5. Def. Cong. Angles 	

Ex. 2:	
Statement:	Reason:
1. $m \angle 3 \cong 40^{\circ}, \angle 1 \cong \angle 2$,	1. Given
$\angle 2 \cong \angle 3$	
2. $\angle 1 \cong \angle 3$ 2. Trans. Prop of Cong. 3. $m \angle 1 \cong m \angle 3$ 3. Def. Cong. Angles 4. $m \angle 1 \cong 40^{\circ}$ 4. Substitution	

Congruent Complements Theorem

- Theorem 2.5: If two angles are complementary to the same angle (or congruent angles), then the two angles are congruent.

If $m \angle 4+m \angle 5=90^{\circ}$ AND $m \angle 5+m \angle 6=90^{\circ}$, then $\angle 4 \cong \angle 6$.

1 - \quad 3)
 Properties of Special Pairs of Angles

- Theorem 2.4: Congruent Supplements. If two angles are supplementary to the same angle (or to congruent angles), then they are congruent.

Proving Theorem 2.4

Given: $\angle 1$ and $\angle 2$ are supplements, $\angle 3$ and $\angle 4$ are supplements, $\angle 1 \cong \angle 4$
Prove: $\angle 2 \cong \angle 3$

Solution:

- Using the transitive property of equality $\mathrm{m} \angle 8=125^{\circ}$. The diagram shows that m $\angle 7+m \angle 8=180^{\circ}$. Substitute 125° for m $\angle 8$ to show $m \angle 7=55^{\circ}$.

