2.6 Pro	ving State	ements ab	out Angle	S

Standards/Objectives Standard 3: Students will learn and apply geometric concepts. Objectives: • Use angle congruence properties • Prove properties about special pairs of angles.

Theorem 2.2 Properties of Angle
Congruence
 Angle congruence is reflexive, symmetric, and transitive.
Examples:
– Reflexive: For any angle A, $\angle A \cong \angle A$.
– Symmetric: If $\angle A \cong \angle B$, then $\angle B \cong \angle A$
– Transitive: If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A$
≅∠C.

Ex. 1: Transitiv Angle Congruen	-
Statement:	Reason:
1. $\angle A \cong \angle B, \angle B \cong \angle C$	1. Given
<i>2. m∠</i> A = <i>m</i> ∠B	2. Def. Cong. Angles
<i>3. m</i> ∠B = <i>m</i> ∠C	3. Def. Cong. Angles
<i>4. m</i> ∠A = <i>m</i> ∠C	4. Transitive property
5. ∠B ≅ ∠C	5. Def. Cong. Angles

Ex. 2:	
Statement:	Reason:
1. $m \angle 3 \cong 40^\circ, \angle 1 \cong \angle 2, \\ \angle 2 \cong \angle 3$	1. Given
 ∠1 ≅ ∠3 m∠1 ≅ m ∠3 m∠1 ≅ 40° 	 Trans. Prop of Cong. Def. Cong. Angles Substitution

Theorem 2.3 1. 21, 22 of 2's
All right angles are congruent. $2 \cdot m cl = 90$ $3 \cdot m c 2 = 90$ $3 \cdot m c 2 = 90$ $4 \cdot m c 2 = 90$
Example 3: Proving Theorem 2.3
Given: $\angle 1$ and $\angle 2$ are right angles Prove: $\angle 1 \cong \angle 2$ \mathcal{G} , $\mathcal{L}I \cong \mathcal{L}2$ \mathcal{G} , $\mathcal{L}I \cong \mathcal{L}2$
dof of ≅

Ex. 3:	I -
Statement:	Reason:
 ∠1 and ∠2 are right angles m∠1 = 90°, m∠2 = 90° m∠1 ≅ m∠2 ∠1 ≅ ∠2 	 Given Def. Right angle Transitive property Def. Cong. Angles

Ex. 4:	
Statement:	Reason:
 ∠1 and ∠2 are supplements, ∠3 and ∠4 are supplements, ∠1 = ∠4 m ∠1 + m ∠2 = 180°; m ∠3 + m ∠4 = 180° m ∠1 + m ∠2 = m ∠3 + m ∠4 m ∠1 + m ∠2 = m ∠3 + m ∠4 m ∠1 + m ∠2 = m ∠3 + m ∠1 m ∠2 = m ∠3 ∠2 = ∠3 	 Given Def. Supplementary angles Transitive property of equality Def. Congruent Angles Substitution property Subtraction property Def. Congruent Angles

Ex. 6: Proving T	heorem 2.6
Statement:	Reason:
 ∠5 and ∠6 are a linear pair, ∠6 and ∠7 are a linear pair ∠5 and ∠6 are supplementary, ∠6 and ∠7 are supplementary ∠5 ≅ ∠7 	 Given Linear Pair postulate Congruent Supplements Theorem