

Definitions

Theorem:
A true statement that follows as a result of other true statements.

Two-column proof:
Most commonly used. Has numbered statements and reasons that show the logical order of an argument.

Example 1: Symmetric Property of Segment Congruence
Given: $\overline{\mathrm{PQ}} \cong \overline{\mathrm{XY}}$
Prove $\overline{X Y} \cong \overline{P Q}$

Statements:		Reasons:
1. $\mathrm{PQ} \cong \overline{X Y}$	1.	Given
2. $\mathrm{PQ}=\mathrm{XY}$	2.	Definition of congruent segments
3. $\mathrm{XY}=\mathrm{PQ}$	3.	Symmetric Property of Equality
4. $\overline{\mathrm{XY}} \cong \overline{\mathrm{PQ}}$	4.	Definition of congruent segments

Paragraph Proof

- A proof can be written in paragraph form. It is as follows:
- You are given that $\overline{\mathrm{PQ}} \cong$ to $\overline{\mathrm{XY}}$. By the definition of congruent segments, $\mathrm{PQ}=\mathrm{XY}$. By the symmetric property of equality, XY $=\mathrm{PQ}$. Therefore, by the definition of congruent segments, it follows that $\overline{X Y} \cong$ $\overline{\mathrm{PQ}}$.

Example 2: Using Congruence

- Use the diagram and the given information to complete the missing steps and reasons in the proof.
- GIVEN: $\mathrm{LK}=5, \mathrm{JK}=5, \overline{\mathrm{JK}} \cong \overline{\mathrm{J}}$

PROVE: $\overline{\mathrm{LK}} \cong \overline{\mathrm{JL}}$

